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Based on the success of plasma mirrors as
optics in high intensity laser systems, the
possibility of forming a diffraction grating
from a plasma in a similar manner was inves-
tigated. A ray tracing simulation was written
in MATLAB for this purpose, and was used
to find the path of light rays interacting with
a plasma mirror and various models of plasma
grating.

Plasma mirrors are well established as optics in high
intensity laser systems. They are effective reflectors
at intensities that would destroy other, conventional
optics, and additionally can provide many beneficial
effects on the properties of a pulse [1].

Under the right conditions, the reflectivity of a
plasma mirror can be very high. For a single pulse,
which creates the plasma mirror and is then reflected
by it, reflectivities of up to 80% have been observed
[1]. This reflectivity was seen for a plasma mirror pro-
duced from a fused silica surface by a 90 fs, 800 nm
pulse incident at an angle of 6°. The reflectivity was
shown to be dependent on incident angle, pulse length,
and intensity. The threshold intensity for plasma mir-
ror formation was 1014 W/cm2 for a 90 fs pulse, with
the optimum reflectivity in the range of 3 × 1015 –
3× 1016 W/cm2.

The reflectivity of a plasma mirror can be further
enhanced by using a prepulse to form it and allowing
the plasma to expand for a short time before reflect-
ing the main pulse from it [2]. A reflectivity of 96%
has been achieved for 1054 nm, 500 fs pulses, with a
prepulse:main-pulse ratio of 1:8. The optimum time
delay between pulses was shown to be 3 ps, corre-
sponding to a plasma density scale length of 0.3 µm
at the time of the main pulse. The reflected beam
was also observed in the far field, and time delays up
to 3 ps were seen to produce a comparable spot size to
that from a single pulse. Longer time delays produced
increased spot sizes, with an order-of-magnitude de-
crease in equivalent intensity for a 10 ps time delay.

The principle of plasma mirrors has also been used
to produce transient plasma gratings, by interfering
two 800 nm, 25 fs prepulse beams with a peak fluence
of 1.7×102 J/cm2 onto a silica target. The plasma
structure was then probed by producing harmonics on
the grating via high harmonic generation and observ-
ing the resulting diffraction pattern in the harmonics.
It was seen that the periodicity of the grating could be

controlled by the focusing configuration, and the grat-
ing depth controlled by the time delay between pulses.
A typical grating period was 7 µm, and the maximum
achievable grating depth before smearing of the struc-
ture by hydrodynamical expansion was on the order
of the laser wavelength [3].

This report discusses ray tracing simulations of var-
ious proposed forms of plasma grating, with the aim
of finding a periodic plasma structure that will act as
an effective and efficient grating. A potential use for
this is in pulse compression, which requires a high line
density. The simulation code was initially tested on a
simple plasma mirror model, as the results could be
compared to known behaviour and to a ray path equa-
tion derived from Snell’s Law. Then simulations were
run to investigate the behaviour of a sinusoidal grat-
ing, a triangular grating produced by a Fourier series
sum, and a hypothetical rounded sawtooth grating.

The MATLAB ray tracing code takes an equation
for the two-dimensional electron density being tested,
and moves the position of the ray forwards in a num-
ber of small steps (maximum step length = 10 nm),
changing its path according to Snell’s Law after each
step. The code does not account for the expanding
motion of the plasma, as this is effectively negligible
given the speed of light and the micrometre scales in-
volved.

Plasma Mirror

The electron density distribution is treated as con-
stant parallel to the ionised surface (a reasonable ap-
proximation on small scales) and as exponentially de-
creasing with distance from the surface. For a plasma
with scale length L, formed from a surface along y = 0,
the electron density is given by:

ne = ne0e
−y/L (1)

The refractive index of the plasma varies as a function
of electron density:

nref =

√
1− neq2e

ε0meω2
(2)

where qe is the electronic charge, ε0 is the permittivity
of free space, and ω is the angular frequency of the
light. The refractive index decreases with proximity to
the surface of the plasma. A distance is reached where
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Figure 1: Paths of rays incident at a variety of angles
onto a plasma mirror.

Figure 2: Graphs showing the effects of [a] incident
angle and [b] scale length on the width of the ray path,
measured at a y value defined by the scale length L,
and the y coordinate of the ray’s turning point, ymin.
It can be seen that the ray path is much wider at
larger incident angles and that there is a fairly steady
increase in ray path width with scale length, at all
angles.
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ε0meω2 = 1, and the refractive index is therefore zero.
This is the critical surface, beyond which light of a
particular frequency cannot propagate. In our model
of a plasma mirror, it is described simply by a value
of y.

It can be seen from Figure 1 that, as with a standard
mirror, the angle of incidence is equal to the angle of
reflection for a plasma mirror. Unlike a standard mir-
ror, the ray path is curved as it travels through the
plasma with its smoothly changing refractive index.
The shape of the ray path and the proximity of the
minimum point of the ray to the critical surface are de-
pendent on the incident angle and the scale length of
the plasma. A ray path width can be defined by con-
sidering a line with a constant, selected value of y and
finding the distance between the two points where the
ray path crosses this line. The effects of incident angle
and scale length on this ray path width are shown in
Figure 2.

Further to the ray tracing simulation, an equation
can be found for the ray path [4]. This allows the
effects of various parameters, like scale length and in-
cident angle, to be more easily and precisely deter-
mined.

y = −L ln

[
ne
nc

(
1− k2

)
sech2

(√
1− k2
2Lk

(x− C)

)]
(3)

where C = x0−
2Lk√
1− k2

arctanh

(√
1− ne0

nc

e−y/L

(1− k2)

)

Figure 3: The ray path from Equation 3 (red dashed
line) and the ray path calculated by the simulation
(black line) for the same parameters.

where nc is the critical density and k = n0 sin(θ0),
with n0 being the refractive index of the plasma at
the start of the ray, and θ0 being the initial angle of
the ray to the electron density normal. Figure 3 shows
the ray path calculated from this equation plotted on
top of the result of the simulation, and it can be seen
that they match very well.

The derivation of this equation can be found in Ap-
pendix A.

Plasma Gratings

There are two main properties of a grating we are
concerned with here:

1. that it has some periodic structure,

2. that the angle of the reflected rays is consistent,
and different to the incident angle.

Sinusoidal Grating

A sinusoidal electron density could be created by in-
terfering beams onto the surface to be ionised. Such a
plasma would have a periodic structure, meeting the
first of the grating conditions. The electron density
of this plasma structure was modelled to be tested for
the second of the grating properties. The equation
used was:

ne =

[
nc + namp

2p

y
sin2

(
πx

p

)]
e−

y/L (4)

with p being the period of the sinusoid. Simulations
were first done without the 2p/y term, meaning the
plasma was expanding in the y direction only. The
2p/y term was then added to give the model a more
realistic expansion, so the plasma was expanding in
the x direction as well.

It was found, however, that a sinusoidal electron
density does not meet the second criterion at all well.
Figure 4 shows typical ray traces for this sinusoidal
grating in a number of different regimes.

At large incident angles (a), a ray samples too many
grating periods for the sinusoidal structure to have an
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Figure 4: [a] In the large-angle case, the ray samples
many grating periods and is reflected as if by a plasma
mirror. [b] For very small angles, the ray is ‘captured’
by the grating. [c] In a typical moderately-small inci-
dent angle ray trace for a sinusoidal grating, the rays
are reflected across a wide range of angles.

effect, and the ray is reflected much like it would be
from a simple plasma mirror. The threshold angle for
this regime varies by plasma scale length, and may be
as low as 20°.

At very small incident angles (b), the ray gets ‘cap-
tured’ by the grating; it reflects repeatedly off the sides
of one of the periods of the sinusoid, eventually escap-
ing in a direction extremely sensitive to the exact path
of the ray. This means a collimated beam ends up be-
ing spread across a large range of angles.

The more realistically expanding model is less sus-
ceptible to the ray capture problem, but even with the
rays reflecting only from the peaks of the sinusoid (c),
they are reflected across a very large range of angles.
It would seem that this is due to the curved shape of
the sinusoid.

Triangular & Sawtooth Gratings

Since the curved shape of a sinusoid causes the rays
to be reflected across a large range of angles, a struc-
ture with straighter edges is likely to be more effec-
tive. An initial idea was to produce such a structure
with a Fourier series sum, as this could potentially be
produced experimentally by interfering a number of
beams together in the right configuration. The idea
of a Fourier series sum structure was tested with a tri-
angular waveform. (See Appendix B.1 for equation.)

Triangular Waveform - Fourier Series Sum

The accuracy with which a Fourier series sum can ap-
proximate a perfect triangular wave depends on the
order of the sum, i.e. the number of terms in the series.
A sum of fewer terms provides a lower accuracy but

Figure 5: [a] The shape of the critical surface for low
(3rd) order and high (100th) order sums. [b] The dif-
ference between the low order position of the critical
surface and that of a perfect triangular wave. [c] Ray
trace from a 3rd order triangular structure. While the
rays are reflected in roughly the same direction, there
is a lot of variation in the angle. [d] Ray trace from
a 100th order triangular structure. The rays are re-
flected at a much more uniform angle, but there is still
noticeable variation.

is also more experimentally feasible. Because of these
competing factors, both a low order and a high order
sum were tested, to demonstrate the most experimen-
tally simple option and compare this to the best that
could reasonably be achieved with the Fourier series
idea.

Figure 5 shows the results of the Fourier series sum
simulations. The shapes of the low and high order
waveforms (a) are visibly different. A 3rd order Fourier
sum (the sum of three sinusoids) has ripples in the crit-
ical surface (b) that deviate from a perfect triangular
wave by 14% on average. If a collimated beam is inci-
dent on the structure (c), the directions of the reflected
rays differ from one other to a great extent. Even for
a 100th order sum (d), with ripples of 0.6% on aver-
age, there is a noticeable variation in the directions of
the reflected rays. It is apparent that the path of the
rays is extremely sensitive to non-uniformities in the
plasma, particularly at the turning point. However,
the rays are reflected in broadly the same direction,

3



indicating that a straight-edged structure is likely to
be effective.

While it seems that a Fourier series sum is not
the way forward, this (approximately) straight-edged
shape has produced the best results yet. It makes
sense, therefore, to find a structure that would work
as a grating, and then try and work out how to pro-
duce it in a plasma.

Rounded Sawtooth

Since with the triangular waveform the rays are re-
flected from both sides of the peaks, the obvious shape
to try next is a sawtooth wave — rather like a blazed
grating. A rounded sawtooth function [5] is used,
since this avoids discontinuities in the plasma, which
would be non-physical. (Conveniently, it is also differ-
entiable everywhere, unlike a standard sawtooth func-
tion.) The electron density is given by:

ne = [nc + namp saw(x)] e−
y/L (5)

The function saw(x) is given in Appendix B.2.
The scale length, L, is varied periodically with x,

since the end of the plasma that has expanded further
is hotter, and has a larger scale length. This also
compensates for the curving of the top of the sawtooth
caused by the expansion of the plasma, as shown in
Figure 6.

L = Lmin + Lamp saw(x) (6)

The majority of the rays in a collimated beam in-
cident on this plasma structure are reflected in the
same direction, which is different to the angle of in-
cidence. However, rays incident at the edges of the
sawtooth are bent by the sudden change in refractive
index, and are reflected across a large range of angles.
This is shown in Figure 7. The proportion of rays de-
flected non-uniformly from the edge of the sawtooth
rather than reflected from the flat surface is depen-
dent on the grating period, as shown in Figure 8. For
a sufficiently large grating period, the majority of the
rays are deflected at the same angle, which is different
to the incident angle. This angle is also wavelength-
dependent, as shown in Figure 9. A sawtooth wave
electron density therefore meets the criteria for a grat-
ing.

Figure 6: The plasma density structure produced from
the rounded sawtooth function, and [closeup] the ef-
fect of the periodic varying of the scale length.

Figure 7: [a] Ray trace from a rounded sawtooth struc-
ture. It can be seen that the majority of the rays are
reflected in the same direction. [b] Close up of the
sawtooth ray trace, showing how the edges of the saw-
tooth peaks bend the paths of the rays travelling close
to them.
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Figure 8: The angles of rays after being reflected from
the grating structure, plotted against their position in
the incident ray. The grating periods are [a] 1 µm, [b]
4 µm, and [c] 20 µm. All the rays are incident at 20°;
this angle is shown by the dashed grey lines to indicate
the angle of reflection from a mirror.

Figure 9: The angle at which rays are deflected for
two different wavelengths incident on the same grating
structure.

Further Work

To take this further, a more realistically expanding
plasma model would be useful. At the moment, the
sawtooth wave model has the plasma expanding only
in the y direction, whereas it would actually expand
perpendicular to the surface at each point.

Another key piece of further work is to look into
whether and how it would be possible to produce the
sawtooth shape in a real plasma.

Conclusion

Ray tracing in MATLAB can be used to simulate the
effect of plasma mirrors and gratings on incident light
rays. Investigation of a number of different potential
plasma grating structures has shown that ray paths
are very sensitive near the turning point to inhomo-
geneities in the plasma. This means that structures
that could feasibly be produced by the interference of
beams, such as a sinusoid and a Fourier series triangu-
lar waveform, will not act as effective, efficient plasma
gratings. However, if a sawtooth structure could be
produced, this could be effective as a >80% efficient
plasma grating.
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Appendices

A Derivation of Ray Path Equation

A.1 Finding the Equation to Solve

Snell’s Law: n0 sin(θ0) = n1 sin(θ1) = n2 sin(θ2) etc. (for all normals parallel to one another)

Let k = n0 sin(θ0), where n0 and θ0 are the refractive index and direction at the start point of the ray.

So for any y, θ:
nref(y) sin(θ) = k (7)

tan(θ) =
dx

dy
and tan(θ) =

sin(θ)

cos(θ)
=

sin(θ)√
1− sin2(θ)

Therefore:
dy

dx
=

√
1− sin2(θ)

sin(θ)
=

√
1

sin2(θ)
− 1 =

√(
nref (y)

k

)2

− 1

So the differential equation to solve is:

dy

dx
=

√(
nref(y)

k

)2

− 1 (8)

The refractive index is: nref(y) =

√
1−

ne(y)q2e
ε0mω2

and the electron density is: ne(y) = ne0e
−y/L

The critical density is given by nc =
ε0mω

2

q2e

So nref (y) =

√
1− ne0

nc
e−y/L

Therefore:
dy

dx
=

1

k

√
(1− k2)− ne0

nc
e−y/L →

∫
dx = k

√
nc
ne0

∫ [
nc
ne0

(1− k2)− e−y/L

]−1/2

dy

Let A = k

√
nc

ne0

and B =
nc

ne0

(1− k2)

So we need to solve:

x = A

∫
1√

B − e−y/L

dy (9)

A.2 Finding an Equation for x

Substitution 1: u = e−
y/L du = −e

−y/L

L
dy = − u

L
dy → x = −LA

∫
1

u
√
B − u

du

Substitution 2: w =
√
B − u dw = −1

2
(B − u)−

1/2 du = − 1

2w
du → x =

2LA

B

∫
1

1− w2
/B

dw

Substitution 3: v =
w√
B

dv =
dw√
B

→ x =
2LA√
B

∫
1

1− v2
dv
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∫
1

1− v2
dv = arctanh(v) → x =

2LA√
B

arctanh(v) + C

Substituting back in, we get:

x =
2LA
√
B

arctanh

√1−
e−y/L

B

+ C (10)

Rearranging gives: e−
y/L = B

[
1− tanh2

( √
B

2LA
(x− C)

)]
= B sech2

( √
B

2LA
(x− C)

)

y = −L ln

[
B sech2

( √
B

2LA
(x− C)

)]

y = −L ln

[
nc

ne0

(1− k2) sech2

(√
1− k2

2Lk
(x− C)

)]
(11)

C is found using Equation 10, and using the fact that that starting coordinates of the ray, (x0, y0), are
known.

C = x0 −
2Lk
√

1− k2
arctanh

(√
1−

ne0

nc

e−y0/L

(1− k2)

)
(12)

B Equations for Grating Waveforms

B.1 Fourier Series for a Triangular Wave

ne =

nc + namp
8

π2

(order−1)∑
k=0

(2k + 1)−2 + (−1)k
sin
[
2π
p (2k + 1)x

]
(2k + 1)2

 e−y/L (13)

B.2 Rounded Sawtooth Function

The function for a rounded sawtooth wave uses functions for rounded triangle and square waves:

trg(x) = 1− 2

π
arccos [(1− δ) sin(2πx)]

sqr(x) =
2

π
arctan

[
sin(2πx)

δ

]

saw(x) =
1

2

[
1 + trg

(
2x− 1

4

)
sqr
(x

2

)]
(14)

δ is a curving parameter, equal to 0.01, or some other small number.
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